Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38441009

RESUMEN

Cancer is the second-leading cause of death in the 21st century, where early detection and appropriate therapeutic interventions are two components essential for effective cancer management. Despite the availability of several conventional diagnostics and therapeutic agents, cancer mortality rates are rising due to an increase in the frequency of recurrence and metastasis in cancer patients. Therefore, tremendous efforts have been expended to address this significant clinical issue and improve therapeutic efficacy. In this regard, nanotheranostic is a multipotential single platform for both cancer diagnosis and treatment through enhanced aqueous solubility and bioavailability of the encapsulated agent, stimulus responsiveness, tumor-specific targeting ability, precise tumor imaging, and real-time drug delivery. Nonetheless, the translational success of nanotheranostic platforms is still in its infancy and requires more extensive research in the context of tumor heterogeneity, safety profile, and regulatory issues, which pose one of the largest technological limitations. The present review summarizes different nanotheranostic platforms and nanotheranostic candidates in clinical trials (AGuIX® , NBTXR3, Ferumoxtran, MM-398, EndoTAG-1, etc.), along with disadvantages and challenges to improving cancer diagnosis and treatment. Overall, the concept, platform, and technical knowledge of nanotheranostics are really helpful to academic and pharmaceutical researchers.

2.
Artículo en Inglés | MEDLINE | ID: mdl-36597505

RESUMEN

YspD is a hydrophilic translocator forming the platform for assemblage of functional translocon. Exposure to the extra-cellular milieu makes YspD a potential therapeutic target. DoGSiteScorer predicted best druggable pocket (P0) within YspD, encompassing predominantly the C-terminal helical bundles and the long helices-9 & 5. COACH metaserver also identified ligand binding residues within the aforementioned druggable pocket mapping to helix-9. Amino acids of helix-9 are involved in oligomerization of YspD. Interaction of helix-9 and parts of C-terminal of YspD with hydrophobic translocator protein (YspB), is essential for translocation of bacterial effectors to initiate an infection. Helices-9 & 5 form an intramolecular coiled-coil structure, required for protein-protein interaction. Targeting intramolecular coiled-coil and parts of C-terminal would be important for functional inactivation of YspD. Solvent exposed surface in YspD, particularly in P0, enhances its accessibility to ligands. Nine small molecular inhibitors of TIIISS were identified and retrieved from ZINC15 database (drug-library) as putative drug candidates. Molecular docking of potential ligands with P0 was done using SwissDock server and Achilles Blind Docking server. Considering the "Significance" threshold of binding score and region of interaction, Salicylidene Acyl Hydrazide derivatives (INP0400) and Phenoxyacetamide derivative (MBX1641) were found to bind effectively with YspD. These potential ligands interact with functional domains of YspD including parts of C-terminal and the intramolecular coiled-coil, which may affect the oligomerization of YspD and disrupt the interaction of YspD with YspB, inhibiting formation of functional translocon. The identified small molecular antimicrobial ligands of YspD could be tested in vivo to attenuate Y. enterocolitica infection by deregulation of Ysa-Ysp TIIISS. Supplementary Information: The online version contains supplementary material available at 10.1007/s40011-022-01443-2.

3.
Cell Rep ; 32(10): 108125, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32905769

RESUMEN

Individually, dysfunction of both the endoplasmic reticulum (ER) and mitochondria has been linked to aging, but how communication between these organelles might be targeted to promote longevity is unclear. Here, we provide evidence that, in Caenorhabditis elegans, inhibition of the conserved unfolded protein response (UPRER) mediator, activating transcription factor (atf)-6, increases lifespan by modulating calcium homeostasis and signaling to mitochondria. Atf-6 loss confers longevity via downregulation of the ER calcium buffer, calreticulin. ER calcium release via the inositol triphosphate receptor (IP3R/itr-1) is required for longevity, while IP3R/itr-1 gain of function is sufficient to extend lifespan. Highlighting coordination between organelles, the mitochondrial calcium import channel mcu-1 is also required for atf-6 longevity. IP3R inhibition leads to impaired mitochondrial bioenergetics and hyperfusion, which is sufficient to suppress long life in atf-6 mutants. This study reveals the importance of organellar calcium handling as a critical output for the UPRER in determining the quality of aging.


Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Animales , Homeostasis , Humanos , Longevidad
4.
Hum Genet ; 139(3): 357-369, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31834493

RESUMEN

Alternative pre-mRNA splicing increases the complexity of the proteome that can be generated from the available genomic coding sequences. Dysregulation of the splicing process has been implicated in a vast repertoire of diseases. However, splicing has recently been linked to both the aging process itself and pro-longevity interventions. This review focuses on recent research towards defining RNA splicing as a new hallmark of aging. We highlight dysfunctional alternative splicing events that contribute to the aging phenotype across multiple species, along with recent efforts toward deciphering mechanistic roles for RNA splicing in the regulation of aging and longevity. Further, we discuss recent research demonstrating a direct requirement for specific splicing factors in pro-longevity interventions, and specifically how nutrient signaling pathways interface to splicing factor regulation and downstream splicing targets. Finally, we review the emerging potential of using splicing profiles as a predictor of biological age and life expectancy. Understanding the role of RNA splicing components and downstream targets altered in aging may provide opportunities to develop therapeutics and ultimately extend healthy lifespan in humans.


Asunto(s)
Envejecimiento/genética , Empalme Alternativo/genética , Longevidad/genética , Animales , Humanos , Fenotipo , Factores de Empalme de ARN/genética
5.
G3 (Bethesda) ; 9(7): 2195-2198, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31064766

RESUMEN

We have generated a single-copy knock-in loci for defined gene expression (SKI LODGE) system to insert any DNA by CRISPR/Cas9 at defined safe harbors in the Caenorhabditis elegans genome. Utilizing a single crRNA guide, which also acts as a Co-CRISPR enrichment marker, any DNA sequence can be introduced as a single copy, regulated by different tissue-specific promoters. The SKI LODGE system provides a fast, economical, and effective approach for generating single-copy ectopic transgenes in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Dosificación de Gen , Regulación de la Expresión Génica , Sitios Genéticos , Animales , Sistemas CRISPR-Cas , Técnicas de Sustitución del Gen , Marcación de Gen
6.
Ecotoxicol Environ Saf ; 176: 258-269, 2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-30939406

RESUMEN

The rising threat of vector-borne diseases and environmental pollution has instigated the investigation of nanotechnology-based applications. The current study deals with a nanotechnological application involving the usage of nanometric pesticides such as permethrin nanoemulsion. The mean droplet diameter and zeta potential of the prepared permethrin nanoemulsion were found to be 12.4 ±â€¯1.13 nm and -20.4 ±â€¯0.56 mV, respectively. The temporal stability of permethrin nanoemulsion was found to be 4 days when checked in the external environment. The permethrin nanoemulsion exhibited LC50 values of 0.038 and 0.047 mgL-1 and 0.049 and 0.063 mgL-1 against larval and pupal stages of Culex tritaeniorhynchus and Aedes aegypti, respectively. The results obtained from the larvicidal and pupicidal assay were corroborated with the histopathological and biochemical profiles of hosts upon treatment with nanometric pesticide. Further, the biosafety studies of the nanopesticide were carried out against different non-target species like freshwater algae (Closterium), Cicer arietinum (Chickpea) and Danio rerio (Zebrafish), and the mosquitocidal concentration of nanopesticide was found to be non-toxic. The following study, therefore, describes the mosquitocidal efficacy of nanometric pesticide formulated in a greener approach, which can become a substitute for conventional pesticide application in an eco-benign manner.


Asunto(s)
Aedes/efectos de los fármacos , Culex/efectos de los fármacos , Insecticidas/química , Mosquitos Vectores/efectos de los fármacos , Nanoestructuras/química , Permetrina/química , Animales , Coloides , Emulsiones , Insecticidas/farmacología , Insecticidas/toxicidad , Larva/efectos de los fármacos , Dosificación Letal Mediana , Nanoestructuras/toxicidad , Permetrina/farmacología , Permetrina/toxicidad , Extractos Vegetales
7.
Malar J ; 17(1): 304, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30126436

RESUMEN

BACKGROUND: Plasmodium enolase is a target for the growth neutralizing antibodies. Interestingly, the three invasive stages i.e. sporozoites, merozoites, and ookinetes express this protein on their cell surface. Polyclonal anti-Plasmodium falciparum enolase (Pfeno) antibodies disrupt traversal of ookinete through mosquito mid-gut wall as well as have inhibitory effect on parasite growth at erythrocytic stage. In a recent study, it was observed that immunization with a unique epitope of parasite enolase (EWGWS) could confer partial protection against mouse malaria. Further validation is needed for the protective potential of this unique epitope in otherwise highly conserved enolase. METHODS: In order to investigate the efficacy of growth inhibitory potential of the epitope of P falciparum enolase, a monoclonal antibody specific to EWGWS is generated. In vitro parasite growth inhibition assays and passive immunization of Plasmodium yoelii (or Plasmodium berghei) infected mice were used to assess the parasite growth neutralizing activity of the antibody. RESULTS: Screening a panel of monoclonal antibodies raised against recombinant Pfeno that were specific to EWGWS resulted in isolation of H12E1. This antibody recognized only EWGWS epitope containing enolases. H12E1 strongly inhibited parasite growth in culture. This inhibition was strain transcending. Passive infusion of this antibody in P. yoelii or P. berghei infected mice showed significant reduction in parasitemia as compared to controls (p < 0.001). Surface Plasmon Resonance measurements indicated high affinity binding of H12E1 to P. falciparum enolase (KD ~ 7.6 × 10-9M). CONCLUSIONS: A monoclonal antibody directed against EWGWS epitope of Pfeno was shown to inhibit the growth of blood stage malarial parasites. This inhibition was species/strain transcending and is likely to arise due to blockade of enolase on the surface of merozoites, functionally implicating Pfeno in invasion related events. Presence of enolase on the cell surface of merozoites and ookinetes could potentially result in inhibition of host cell invasions at erythrocytic and transmission stages in the parasite life cycle. It is suggested that antibodies against EWGWS epitope have the potential to confer dual stage, species and strain transcending protection against malaria.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antiprotozoarios/inmunología , Malaria/prevención & control , Fosfopiruvato Hidratasa/inmunología , Plasmodium falciparum/enzimología , Plasmodium falciparum/inmunología , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Antiprotozoarios/administración & dosificación , Modelos Animales de Enfermedad , Inmunización Pasiva , Malaria/inmunología , Masculino , Ratones , Plasmodium berghei/inmunología , Plasmodium yoelii/inmunología
8.
FEBS Open Bio ; 7(7): 892-904, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28680804

RESUMEN

Plasmodium falciparum enolase (Pfeno) is a dimeric enzyme with multiple moonlighting functions. This enzyme is thus a potential target for anti-malarial treatments. A unique feature of Pfeno is the presence of a pentapeptide insert 104 EWGWS 108. The functional role of tryptophan residues in this insert was investigated using site-directed mutagenesis. Replacement of these two Trp residues with alanines (or lysines) resulted in a near complete loss of enolase activity and dissociation of the normal dimeric form into monomers. Molecular modeling indicated that 340R forms π-cation bonds with the aromatic rings of 105W and 46Y. Mutation induced changes in the interactions among these three residues were presumably relayed to the inter-subunit interface via a coil formed by 46Y : 59Y, resulting in the disruption of a salt bridge between 11R : 425E and a π-cation interaction between 11R : 59Y. This led to a drop of ~ 4 kcal·mole-1 in the inter-subunit docking energy in the mutant, causing a ~ 103 fold decrease in affinity. Partial restoration of the inter-subunit interactions led to reformation of dimers and also restored a significant fraction of the lost enzyme activity. These results suggested that the perturbations in the conformation of the surface loop containing the insert sequence were relayed to the interface region, causing dimer dissociation that, in turn, disrupted the enzyme's active site. Since Plasmodium enolase is a moonlighting protein with multiple parasite-specific functions, it is likely that these functions may map on to the highly conserved unique insert region of this protein. ENZYMES: Enolase(EC4.2.1.11).

10.
Nature ; 541(7635): 102-106, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-27919065

RESUMEN

Ageing is driven by a loss of transcriptional and protein homeostasis and is the key risk factor for multiple chronic diseases. Interventions that attenuate or reverse systemic dysfunction associated with age therefore have the potential to reduce overall disease risk in the elderly. Precursor mRNA (pre-mRNA) splicing is a fundamental link between gene expression and the proteome, and deregulation of the splicing machinery is linked to several age-related chronic illnesses. However, the role of splicing homeostasis in healthy ageing remains unclear. Here we demonstrate that pre-mRNA splicing homeostasis is a biomarker and predictor of life expectancy in Caenorhabditis elegans. Using transcriptomics and in-depth splicing analysis in young and old animals fed ad libitum or subjected to dietary restriction, we find defects in global pre-mRNA splicing with age that are reduced by dietary restriction via splicing factor 1 (SFA-1; the C. elegans homologue of SF1, also known as branchpoint binding protein, BBP). We show that SFA-1 is specifically required for lifespan extension by dietary restriction and by modulation of the TORC1 pathway components AMPK, RAGA-1 and RSKS-1/S6 kinase. We also demonstrate that overexpression of SFA-1 is sufficient to extend lifespan. Together, these data demonstrate a role for RNA splicing homeostasis in dietary restriction longevity and suggest that modulation of specific spliceosome components may prolong healthy ageing.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Restricción Calórica , Longevidad/genética , Longevidad/fisiología , Complejos Multiproteicos/metabolismo , Factores de Empalme de ARN/metabolismo , Empalme del ARN , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Envejecimiento/genética , Animales , Proteínas de Caenorhabditis elegans/genética , Genoma/genética , Homeostasis , Diana Mecanicista del Complejo 1 de la Rapamicina , Precursores del ARN/genética , Precursores del ARN/metabolismo , Factores de Empalme de ARN/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transcriptoma
11.
Protein Expr Purif ; 117: 17-25, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26341815

RESUMEN

Plasmodium spp. solely rely on glycolysis for their energy needs during asexual multiplication in human RBCs, making the enzymes of this pathway potential drug targets. We have cloned, over-expressed and purified Plasmodium falciparum glyceraldehyde-3-phosphate dehydrogenase (PfGapdh) for its kinetic and structural characterization. ∼ 30-40 mg pure recombinant enzyme with a specific activity of 12.6 units/mg could be obtained from a liter of Escherichia coli culture. This enzyme is a homotetramer with an optimal pH ∼ 9. Kinetic measurements gave KmNAD=0.28 ± 0.3 mM and KmG3P=0.25 ± 0.03 mM. Polyclonal antibodies raised in mice showed high specificity as was evident from their non-reactivity to rabbit muscle Gapdh. Western blot of Plasmodium yoelii cell extract showed three bands at MW ∼ 27, ∼ 37 and ∼ 51 kDa. Presence of PyGapdh in all the three bands was confirmed by LC-ESI-MS. Interestingly, the ∼ 51 kDa form was present only in the soluble fraction of the extract. Subcellular distribution of Gapdh in P. yoelii was examined using differential detergent fractionation method. Each fraction was analyzed on a two-dimensional gel and visualized by Western blotting. All four subcellular fractions (i.e., cytosol, nucleus, cytoskeleton and cell membranes) examined had Gapdh associated with them. Each fraction had multiple molecular species associated with them. Such species could arise only by multiple post-translational modifications. Structural heterogeneity observed among molecular species of PyGapdh and their diverse subcellular distribution, supports the view that Gapdh is likely to have multiple non-glycolytic functions in the parasite and could be an effective target for anti-malarial chemotherapeutics.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasas , Plasmodium falciparum/enzimología , Plasmodium yoelii/enzimología , Proteínas Protozoarias , Animales , Gliceraldehído-3-Fosfato Deshidrogenasas/biosíntesis , Gliceraldehído-3-Fosfato Deshidrogenasas/química , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/aislamiento & purificación , Humanos , Ratones , Plasmodium falciparum/genética , Plasmodium yoelii/genética , Proteínas Protozoarias/biosíntesis , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/aislamiento & purificación , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Especificidad de la Especie
12.
Malar J ; 14: 406, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26463341

RESUMEN

BACKGROUND: Plasmodium falciparum enolase has been shown to localize on the surface of merozoites and ookinetes. Immunization of mice with recombinant Plasmodium enolase (rPfeno) showed partial protection against malaria. Anti-rPfeno antibodies inhibited growth of the parasite in in vitro cultures and blocked ookinete invasion of mosquito midgut epithelium. It is hypothesized that parasite specific moonlighting functions (e.g. host cell invasion) may map on to unique structural elements of Pfeno. Since enolases are highly conserved between the host and the parasite, a parasite-specific epitope of enolase was displayed on novel protein nanoparticles produced by a halophilic Archaeon Halobacterium sp. NRC-1 and tested their ability to protect mice against live challenge. METHODS: By genetic engineering, a Plasmodium-enolase specific peptide sequence (104)EWGWS(108) with protective antigenic potential was inserted into the Halobacterium gas vesicle protein GvpC, a protein localized on the surface of immunogenic gas vesicle nanoparticles (GVNPs). Two groups of mice were immunized with the wild type (WT) and the insert containing recombinant (Rec) GVNPs respectively. A third group of mice was kept as un-immunized control. Antibody titres were measured against three antigens (i.e. WT-GVNPs, Rec-GVNPs and rPfeno) using ELISA. The protective potential was determined by measuring percentage parasitaemia and survival after challenge with the lethal strain Plasmodium yoelii 17XL. RESULTS: Rec-GVNP-immunized mice showed higher antibody titres against rPfeno and Rec-GVNPs, indicating that the immunized mice had produced antibodies against the parasite enolase-specific insert sequence. Challenging the un-immunized, WT-GVNP and Rec-GVNP-immunized mice with a lethal strain of mice malarial parasite showed significantly lower parasitaemia and longer survival in the Rec-GVNP-immunized group as compared to control groups. The extent of survival advantage in the Rec-GVNP-group showed positive correlation with anti-rPfeno antibody titres while the parasitaemia showed a negative correlation. These results indicate that the parasite enolase peptide insert displayed on Halobacterium GVNPs is a good candidate as a protective antigenic epitope. CONCLUSION: The work reported here showed that the parasite-specific peptide sequence is a protective antigenic epitope. Although antibody response of B-cells to the guest sequence in Rec-GVNPs was mild, significant advantage in the control of parasitaemia and survival was observed. Future efforts are needed to display multiple antigens with protective properties to improve the performance of the GVNP-based approach.


Asunto(s)
Portadores de Fármacos/administración & dosificación , Vacunas contra la Malaria/inmunología , Malaria/prevención & control , Nanopartículas/administración & dosificación , Fosfopiruvato Hidratasa/inmunología , Plasmodium/enzimología , Animales , Anticuerpos Antiprotozoarios/sangre , Vesículas Citoplasmáticas/genética , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Halobacterium/genética , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/genética , Masculino , Ratones , Parasitemia/prevención & control , Fosfopiruvato Hidratasa/genética , Plasmodium/genética , Plasmodium/inmunología , Proteínas/administración & dosificación , Proteínas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Análisis de Supervivencia , Resultado del Tratamiento , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
13.
FEBS J ; 282(12): 2296-308, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25787157

RESUMEN

A distinct structural feature of Plasmodium falciparum enolase (Pfeno) is the presence of a five amino acid insert -104EWGWS108- that is not found in host enolases. Its conservation among apicomplexan enolases has raised the possibility of its involvement in some important physiological function(s). Deletion of this sequence is known to lower k(cat)/K(m), increase K(a) for Mg(II) and convert dimer into monomers (Vora HK, Shaik FR, Pal-Bhowmick I, Mout R & Jarori GK (2009) Arch Biochem Biophys 485, 128-138). These authors also raised the possibility of the formation of an H-bond between Ser108 and Leu49 that could stabilize the apo-Pfeno in an active closed conformation that has high affinity for Mg(II). Here, we examined the effect of replacement of Ser108 with Gly/Ala/Thr on enzyme activity, Mg(II) binding affinity, conformational states and oligomeric structure and compared it with native recombinant Pfeno. The results obtained support the view that Ser108 is likely to be involved in the formation of certain crucial H-bonds with Leu49. The presence of these interactions can stabilize apo-Pfeno in an active closed conformation similar to that of Mg(II) bound yeast enolase. As predicted, S108G/A-Pfeno variants (where Ser108-Leu49 H-bonds are likely to be disrupted) were found to exist in an open conformation and had low affinity for Mg(II). They also required Mg(II) induced conformational changes to acquire the active closed conformational state essential for catalysis. The possible physiological relevance of apo-Pfeno being in such an active state is discussed.


Asunto(s)
Magnesio/metabolismo , Modelos Moleculares , Mutagénesis Insercional , Proteínas Mutantes/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Plasmodium falciparum/enzimología , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Secuencia Conservada , Estabilidad de Enzimas , Enlace de Hidrógeno , Cinética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Oligopéptidos/química , Oligopéptidos/genética , Oligopéptidos/metabolismo , Fosfopiruvato Hidratasa/química , Fosfopiruvato Hidratasa/genética , Agregado de Proteínas , Conformación Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Serina/química
14.
PLoS One ; 8(8): e72687, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24009698

RESUMEN

Plasmodium enolase localizes to several sub-cellular compartments viz. cytosol, nucleus, cell membrane, food vacuole (FV) and cytoskeleton, without having any organelle targeting signal sequences. This enzyme has been shown to undergo multiple post-translational modifications (PTMs) giving rise to several variants that show organelle specific localization. It is likely that these PTMs may be responsible for its diverse distribution and moonlighting functions. While most variants have a MW of ~50 kDa and are likely to arise due to changes in pI, food vacuole (FV) associated enolase showed three forms with MW~50, 65 and 75 kDa. Evidence from immuno-precipitation and western analysis indicates that the 65 and 75 kDa forms of FV associated enolase are ubiquitinated. Using mass spectrometry (MS), definitive evidence is obtained for the nature of PTMs in FV associated variants of enolase. Results showed several modifications, viz. ubiquitination at K147, phosphorylation at Y148 and acetylation at K142 and K384. MS data also revealed the conjugation of three ubiquitin (Ub) molecules to enolase through K147. Trimeric ubiquitin has a linear peptide linkage between the NH2-terminal methionine of the first ubiquitin (Ub1) and the C-terminal G76 of the second (Ub2). Ub2 and third ubiquitin (Ub3) were linked through an atypical isopeptide linkage between K6 of Ub2 and G76 of Ub3, respectively. Further, the tri-ubiquitinated form was found to be largely associated with hemozoin while the 50 and 65 kDa forms were present in the NP-40 soluble fraction of FV. Mass spectrometry results also showed phosphorylation of S42 in the cytosolic enolase from P. falciparum and T337 in the cytoskeleton associated enolase from P. yoelii. The composition of food vacuolar proteome and likely interactors of enolase are also being reported.


Asunto(s)
Fosfopiruvato Hidratasa/metabolismo , Plasmodium/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/metabolismo , Vacuolas/metabolismo , Secuencia de Aminoácidos , Hemoproteínas/metabolismo , Espectrometría de Masas , Datos de Secuencia Molecular , Peso Molecular , Péptidos/química , Fosfopiruvato Hidratasa/química , Fosforilación , Plasmodium/genética , Unión Proteica , Proteoma , Proteínas Protozoarias/química , Alineación de Secuencia , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...